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1. INTRODUCTION

Let VI"'" vn be fixed natural numbers. Set N = VI + ... -1- vn - l.
Construct Newton's interpolation formula

on the basis of the nodes (Xk)~ , a ~ Xl < ... < Xn ~ b, with multiplicities
(V1C)~ respectively. It is a well-known fact that

where 11 g II : = max{! g(X) I : a ~ X ~ b}. So, the extremal problem:

determine inf II (x - Xl)"l ••• (x - xn)"n II
X1<···<Xn

(1.1)

is a natural question suggested by the above mentioned classical inter­
polation process. The solution of (1.1) in the simple case Vl = ... = V n = 1
leads to the famous Chebyshev polynomials of the first kind.

The purpose of our paper is to prove the existence and uniqueness of
extremal nodes (x*)~ in problem (1.1) for any fixed system of multiplicities
(Vk)~ . As an auxiliary result we give a multiple nodes extension of a theorem
of Davis [1] (see also [2], [3], [4]) concerning interpolation at extremal points
for algebraic polynomials.

Note that L. Tschakaloff [5] (see also Popoviciu [6]) has arrived at the
same problem (1.1) but with II '11 = II ·IIL.[a.b] studying mechanical qua­
dratures of highest degree of precision. He proved the existence of extremal
nodes for this case. The uniqueness, remaining an open problem for 20 years,
was established recently by Ghizzetti and Ossicini [7]. An extension of this
L2-problem was considered in a paper of Karlin and Pinkus [8].

293
0021-9045/79/080293-080$2.00/0

Copyright © t 979 by Academic Press, rne.
All rights of reproduction in any form reserved.



294 B. D. BOJAN'OV

2. INTERPOLATION AT EXTREMAL POINTS

We start with an auxiliary proposition.

THEOREM 1. Let (Vk); be arbitrary fixed natural numbers and let p(x) be a
continuous/unction defined and;;::O on [xo, 00), having afinite number o/zeros
in any finite subinterval [xo, xl Given positive numbers (ek)k=l , there exists a
unique system 0/points (Xk); , Xo < Xl < ... < Xn , such that

I
Xk n IJ p(x) n (x - XiY; dx = ek' k = I,..., n.

Xk_l t=1

Proof Define

Let l(xl ,... , x n ; p(x)) denote the Jacobian

{l p(x) w(x) Wl(X) dx
Xo

f' p(x) w(x) wnCx) dx
Xo

D(CPI ,••• , CPn)
D(XI , ... , xn)

f2 p(x) w(x) Wl(X) dx ." f2 p(x) w(x) wnCx) dx
Xl Xl

fn p(x) w(x) Wl(X) dx ...rn

p(x) w(x) wnCx) dx
Xn- 1 Xn_l

. nn (Xi + Xi-l )VkEi = sIgn 2 - Xk ,
k-l

and
n

w(X) = n (x - Xiy;-l.
i=l

We claim that l(XI ,... , Xn ; p(x)) =1= 0 provided Xo < Xl < ... < Xn ·
Indeed, otherwise there exist real numbers (bi)n such that L;=l I bi I > 0
and

(k p(x) w(x){b1(OI(X) + ... + bnwn(x)} dx = 0
Xk-l
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for k = 1,... , n. Clearly the polynomial Q(x) = blwl(X) + ... + bnwn(x)
must change sign at least once in (Xk-l, Xk)' Therefore Q(x) has n sign
changes in (xo , x n). But Q E 17n-1 (17m denotes the class of all algebraic
polynomials of degree ~m).

The proof of Theorem 1 proceeds by induction on n. Let n = 1. Clearly,
the function

fm = IL:p(x)(x - gyl dx I

is strictly increasing and f(xo) = O. Therefore there exists only one number
Xl > X o with f(x l ) = el . Now suppose that the theorem holds for every
choice of the multiplicities {j.ti)~-l, the values (e i)i-1 and the weight p(x).
Then the problem

(2.1)

(i.e., the problem of Theorem 1 with the noted parameters) has a unique
solution (tk)~-l in (xo, (0). Let g ?: Xo' Denote by {xk(m~:i the unique
solution of the problem

(el , ... , en- I Ihex)) , p«x) = p(x) I X _ g IVn.
VI '00', V n- 1

Since J(x1(g),00., xn-l(g); heX)) i= 0, it follows from the implicit function
theorem that Xk(g), k = 1'00" n, are continuous functions in (xo, 00). Now
we shall show that

for g > tn-I' (2.2)

Recall that xn-I(tn-I) = tn-I' Suppose that xn-I(to) = go for some go > tn-I'
Then the problem (2.1) would have two different solutions: (tk)~-I and
{Xk(tom-l, which is impossible by the induction hypothesis. Therefore
x n- 1(t) - g =1= 0 for every g > t n- 1 • Thus, in order to prove (2.2) we need
only to demonstrate that xn-l(g) < gfor sufficiently large g. We shall show
even more, namely, that Xn-l(~ is bounded in [xo , 00). Indeed, suppose that
lim sup<_oo Xn-I(~ = 00. Then there exist an index k, 1 ~ k ~ n - ], and
a point ex > Xo such that

lim sup XkW = 00
<~OO

and Xk-1(g) ~ ex for gE [xo , (0).
(2.3)

Clearly,

n-I cr+I
e/: ?: (g - (ex + l)yn IT {x;(g) - (ex + l)}"i J p(x)(x - exY1~'" 'Vk-1 dx

i=k ex

=: reg) (2.4)
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for every g such that min{g, Xk(t)} ;? ex + 1. But lim sup<~oo reg) c= CXJ III

view of (2.3). Thus xn-Ict) < g for sufficiently large g and (2.2) follows.
Consider the function

It is continuous in [tn-I, (0) and g(tn-l) = O. One can see, as in (2.4), that
lim sup.~<Xl g(g) = 00. Hence there exists a point Xn such that g(xn) = en
and Xn > tn-I' It remains to show uniqueness of Xn. Let us assume that
g(gl) = g(g2) = en and tn- l < gl < g2 . By Rolle's theorem there exists a
point TJ E(gl , g2) for which g'(TJ) = O. But

g'(TJ) = :g <Pn(xIW,···, xn-l(g), g)I<~n

J(xI(TJ),···, xn-I(TJ), TJ; p(x))
= J(xI(TJ),···, xn-I(TJ); Pn(x)) .

Hence J(xI(TJ), ..., xn-I(TJ), TJ; p(x)) = 0, which contradicts our previous
observation. The theorem is proved.

COROLLARY 1. Let (Vk)~ be a fixed system of arbitrary natural numbers.
Let the real numbers (Yk)~+l satisfy the requirements Y'e -oF Yk-l ,
k = 1,... , n + 1, and

!Yk-l - Y", ! + ! Yk - Yk+l I = ! Yk-l - Yk+l I
i Yk-l - Yk I + !Yk - Yk+l I > I Yk-l - Yk+l I

if Vk is even,

if Vk is odd,

k = 1,... , n. Given an interval [a, b], there exists a unique polynomial P E TTN ,

N = VI + ... + Vn + 1, and a unique system of points (Xk)~' a = Xo <
Xl < ... < Xn < Xn+l = b, such that

P(Xk) = Yk , k = 0, 1, ... , n + 1,

p(iI\Xk ) = 0, k = 1, ... , n, A = 1,... , Vk'

Proof Denote by (tk)~ the unique solution of the problem

(
IY1 - Yo I , IY2 - YI I ,... , [Yn - Yn-l I)

VI' V2 , ... , V n

(2.5)

in [a, (0) (i.e., the problem of Theorem 1 with weight p(x) = 1). The
polynomial PI(t) = (t - tl)"1 ••• (t - tn)"n is strictly monotone in [tn, (0).
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Choose the point ~ > tn by the condition IYn+l - Yn I = S;n IPI(t)1 dt.
Set

t

p(t) = Yo + sign(YI - Yo) f PI(T) dT.
a

It is easily seen that Xk = a + [(b - a)j~ - a)](tk - a), k = 1,... , n, and
that P(x) = P(a + [(~ - a)j(b - a)](x - a» is the unique polynomial from
7TN satisfying (2.5).

Remark 1. The particular case VI = ... = Vn = 1 of Corollary 1 was
studied by Davis [1], Miczelski and Paszkowski [2], Videnskii [3], and
Fitzgerald and Schumaker [4].

The following is an immediate consequence of Corollary 1.

COROLLARY 2. Let (Vk)~ be afixed system ofarbitrary odd natural numbers.
There exists a unique polynomial TN(V; x) of degree N = VI + ... + Vn + 1
and leading coefficient 1 and a unique system of points (Xk)~' -1 = Xo <
Xl < ... < Xn < xn+l = 1, such that

and

Clearly TN(v; x) = cos(Narccos x) for I x I < 1 in the case VI = ... =
V n = 1. Thus TN(v; x) can be considered as a generalizations of the Chebyshev
polynomial of the first kind. In the next section we give another extension of
this classical polynomial.

3. MAIN RESULT

Let the multiplicities (Vk)~ and the point a be fixed. Suppose the numbers
(ek)~+l are positive. By virtue of Theorem 1 there exists a unique system of
points a = X o < Xl < .. , < Xn < Xn+l such that

Irk W(x)dxl=ek,k=l, ...,n+l,
Xk_l

where W(x) = (x - xI)V! ... (x - xn)"n. We shall use in the sequel the
following property of the last point Xn+l .

LEMMA 1. The point xn+1 is a differentiable function of el , ... , en+1 in the
domain G := {(el , ... , en+1): ek > 0, k = 1,... , n + I}. Moreover oXn+1joek > °
(k = 1,... , n + 1) in G.
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Proof Set En+1 = 1, Ek = (-I)vk Ek+1, k = 1,... , n. We proved in
Theorem 1 that the functions {xk(el ,... , en+1)}~+1 are uniquely defined by the
system of equations

Xk

CPk(XI ,... , Xn+1; el ,... , en+1) := J W(x) dx - Ekek = 0, k = I,... , 11 + 1.
Xk-l

Let us abbreviate J(xI ,... , Xn ; p(x)) to J(xI ,... , x n) in case p(x) = 1. Since

D(CPI ,... , CPn+1) Wi( ) ( )
D( ) = Xn+1 J Xl'"'' Xn =1= 0,

Xl"'" X n+1.

we conclude on the basis of the implicit function theorem that
{xk(el ,... , en+1m+1 are differentiable functions in G. It is not difficult to
verify that

D(CPI , , CPn, CPn+1) . D(CPI , , CPn' CPn+1)
D(xI , , Xn , ek) D(XI , , Xn , Xn+1)

Xn+l JXn+1J w(x) WI(X) dx '" w(x) wix) dx
X n Xn

As in the proof of Theorem lone can show that the last determinant does
not vanish in G. Since W(xn+1) > °and J(xI ,... , x n) =1= °in G, we conclude
that oXn+1!oek has a constant sign in G. Therefore xn+l is a strictly monotone
function with respect to ek . On the other hand

for sufficiently large ek . Hence Xn+1 is a monotone increasing function of ek ,
k = 1,... , n + 1. The lemma is proved.



GENERALIZED CHEBYSHEV POLYNOMIALS 299

THEOREM 2. Let (Vk)i be a fixed system of arbitrary natural numbers.
Given [a, b], there exists a unique system ofpoints (x*)~ such that

1\ (x - Xi)"1 '" (x - x*)"n 1\ = inf II (x - xS1 '" (x - xnY" 1\ •
11. a~xl<'.'<xn~b

Moreover, a < xt < '" < x; < b. The extremal polynomial Tm('oJ; x) =
(x - Xt)V

1 ••• (x - x;)vn (m = V 1 + ... + vn) is uniquely determined by the

condition that there exist n - I points (t,C)~-\ a = to < t1 < '" < tn- 1 <
t n = b, such that

for k = 0, 1,... , n.

Proof Acording to Corollary I, there exists a unique polynomial P E 7Tm

and a unique system of points

a = to < xi < t1 < ... < tn- 1 < x~ < tn = b

such that

P(tk) = (_I)m- v1
-'''-

V
\ k =,0,... , n,

P'(tk) = 0, k = 1,... , n - 1,

and

p(A)(X:) = 0, k = 1,... , n, ,\ = 0,... , Vk - I.

Evidently II P II = 1 since P'(x) vanishes only at (x*)~ and (tk)~-l. It is clear
that

P(x) = C(x - xi)"1 '" (x - x:)"", C = Ij{(b - xi)"1 '" (b - x:r"}.
Denote Tm('oJ; x) = C-1 . P(x). We shall show that Tm('oJ; x) is the desired
polynomial. Indeed, let us assume that there is a polynomial Q of the form
Q(x) = (x - X1)V1 •• , (x - xn)v" with I Xl - xt I + '" + I X n - x; I > 0
such that

!! Q ii < II Tm(v; ')11 =: E. (3.1)

Clearly Q'(x) has q < 2n - I distinct real zeros. Let us denote them by (Ok)'i ,
a = eo < 01 < ... < eq < eN1 = b. It follows from (3.1) that

if Ok or 0k-1 E {Xi}~' and <2E otherwise, for k = 1,... , q. Hence Lemma 1
implies Oq+1 < tn , i.e., b < b, a contradiction. The theorem is proved.
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Remark 2. In the case VI = ... = Vn = f-L it can be shown directly that

= Il-2LI .cos(narccos x)/" Il I C[-I.I]

Finally, we make two conjuctures:

1. IP(x) [ ~ I Tm(v; x)[ if x ¢ (a, b);

2. II p<k) Ilc[a.b] ~ T~:)(v; b), k = 0'00" m,

for every polynomial P(x) of the form

A = const, such that

II P IIcla.b] ~ II Tm(v; ·)!Ida.b] .
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